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ABSTRACT 

Recent fiscal and personnel cut-backs have placed significant restrictions on 

surface ship training opportunities. As a result, additional methods of training must be 

established in order to maintain current operational readiness. This thesis research 

investigates the use of a workstation-based shipboard virtual environment (VE) as 

complementary training for naval personnel, in particular, in the combat information center 

(CIC). 

The approach taken was to extend the Naval Postgraduate School's Shiphandling 

Training Simulator (SHIPSIM) and shipboard Virtual Environment Trainer to include a 

combat information center virtual environment system (CICVET). Using the NPSNETIV 

framework, the system provides two levels of training; the first reflects the dynamics of 

real-world warfare theaters with the capability for distant entities to interact, while the 

second allows for the team training of shipboard personnel, possibly in separate locations, 

within the same virtual CIC. 

To achieve our goal we built a real-time, distributed, interactive shipboard 

environment for combat information center training. It consists of a three-dimensional CIC 

model, containing functioning consoles for information display, sensor management, and 

weapons control. 
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I. INTRODUCTION 

A.   MOTIVATION 

1.  The Plight of Naval Training: Resources vs. Responsibilities 

Shipboard training has long been acknowledged as the key to the operational 

success of naval units- an undebatable point. However, the question of which training 

methods produce the best results has at one time or another been a hot topic in every 

wardroom, chiefs mess, and berthing. While history may show that the old ways produced 

satisfactory results, Navy-wide training is still undergoing numerous transformations in an 

effort to perfect the process. This is not an easy task. The shipboard environment could not 

be described as the most conducive setting to learning. For executive officers, ensuring 

adequate training time for the numerous shipboard teams (Damage Control Training Team, 

Engineering Casualty Control Training Team, Combat Systems Training Team, 

Navigation/Seamanship Training Team, etc.) can be a nightmare and makes for some 

interesting PB4T (Planning Board For Training) meetings, as team leaders jockey for their 

share of the calendar. Compound this with scheduling equipment down-times for 

maintenance, arranging ship visits, charting shipboard inspections, while simultaneously 

considering the ship's underway schedule and operational requirements. Cost of current 

training is also a major factor. Equipment must be up and fully functional for training to be 

substantial, while additional underway time may be necessary. Accounting for all these 

factors may result in low quality and inadequate training. 

Take for example, the training of the NGFS (Naval GunFire Support) team. While 

inport, current training involves canned scenarios where sheets of bearing and ranges 

(painstakingly created and checked ahead of time) are used for the team to act on. Not the 

most effective way to conduct training. When the ship does finally get its turn on an actual 

firing range, training is, of course, at peak levels. But how many times has the fog on San 

Clemente Island prevented the day's shoot, or how many guns and radar units have 



malfunctioned when call for fire is given? This real-time environment training is at a 

premium and lost opportunities are not easily replaced. 

The recent drawdown of personnel and the ancillary dwindling of military budgets, 

without a complementary and proportionate reduction in operational requirements, has 

placed great burden on today's leaders. In fact, the increasing concern over budgetary 

matters means that Commanding Officers must seek out enterprising new ways to train 

their crews if the ship is to meet its challenges successfully. The monetary costs associated 

with underways for training or the time costs connected with scheduling simulator time 

prohibit flexibility in engineering professional training evolutions and may even prevent 

traditional means of conducting training. Additionally, the dwindling of realistic training 

periods and the diminishing underway time result in "book smart" sailors, whose training 

records will lack the necessary "hands-on" experience required to fulfill their duties 

professionally, competently, and safely. What is needed is an innovative change to training 

that can encompass the best qualities of at-sea and simulator training while defraying the 

associated costs and alleviating the problems inherent to current inport training methods. 

2.  Virtual Environments 

Training at sea and training in large scale simulators share the goal of immersing 

trainees into an environment that closely approximates the actual environment the 

personnel will be expected to perform in. This is so, not only because learning is at a 

maximum when the student is surrounded by the sights, sounds, and contacts of realistic 

environments, but also because intangible experiences such as those brought about by 

working in stressful situations, cannot be learned sitting at a desk. Simulators accomplish 

their goal through the use of virtual environment technology. 

"VE technology developments over the past decade have produced the ability to 

synthesize large scale, three-dimensional models, such as a Navy ship, and produce a real 

time, interactive simulation. Advances in network systems allow these graphical 

simulations to communicate, enabling a large number of people to interact in the same 



Virtual environment. Although these virtual environments can be created, their capacity to 

solve the Navy's training problem must be demonstrated before building them makes 

sense" [MCD095]. Virtual environments provide users with a sense of "presence," or the 

feeling that the environment is occupied and not simply looked at. Figure 1 is an illustration 

of this notion. 

REAL 
WORLD 

CURRENT 
TRAINING 

VIEW 

LARGE SCALE 
SIMULATOR 

VIEW 

A^VN 

VE 
IMMERSIVE 

VIEW 

Figure 1: Virtual Environment Immersive View vs. Current Training View 

For users surrounded by the environment, there is no need for altering their natural 

perceptions in order to absorb what is happening around them. For instance, no need exists 

for imagining environmental factors that cannot be represented in two-dimensional form. 

Thus, personnel can interact within this virtual environment using the same natural 

semantics that they use when interacting with the physical world, which means that they 

are more likely to take lessons they learn there into the real world [HITL94]. "It is the 

sense of immersion and inclusion in the virtual educational environment that may allow the 

student an opportunity to interpret and encode his or her perceptions and paradigms from a 

broader, deeper set of experiences than those that can be had in the "standard" educational 

environment."[OSBE92] 

VE technology is ideally suited to safely prepare Navy personnel for the complex 

environments they encounter on Navy ships. In recent years the Navy has demonstrated the 

viability of using virtual environments for training. Incorporating as much of the actual 

hardware to be trained on as possible, large simulators, such as for ship-handling or flight 

training, are currently proving their worth in the fleet. Their major drawback is the fact that 



there is a limited number available to serve the entire fleet and their fixed location make 

their use by any but the co-located ships impractical. A solution is to model all aspects of 

the real-world into a virtual environment that is cost effective, portable, adaptable, and 

expandable. Virtual environments can produce a training environment far more realistic 

than methods currently in use aboard ships, at a cost far below that of shore based trainers, 

and they are able to be used by the ship wherever it goes. 

To continue the previous example, suppose the NGFS team had the capability to 

practice their skills in a virtual environment. The NGFS team wouldn't have to worry about 

any malfunction or weather problems. Meanwhile, their immersion within the environment 

would give the same training as would an actual shoot. Additionally, other networked 

players in the scenario, such as tank drivers or infantry, could be the actual units requiring 

the support. Meanwhile the ship's helo, another environment entity and piloted by an actual 

pilot, could provide third party targeting and bridge watchstanders could practice coastal 

navigation. The virtual environment gives the team the capability to perform operations 

that were once limited to just evolutions conducted at sea. Now qualifications and 

maintenance of qualifications can be performed without the ship ever slipping its mooring. 

Total integration of the team into the operational capability of the ship is the goal. 

B.   BACKGROUND 

Investigating new opportunities in virtual environments and applying tomorrow's 

technology is the goal of NPSNET. NPSNET is a collaboration of faculty, staff and 

students to demonstrate the feasibility of a low-cost, large-scale, distributed virtual 

environment. Using commercial off-the-shelf components, it utilizes the DIS (Distributed 

Interactive Simulation) communications protocol for these multi-platform simulations. By 

being distributed, units in separate locations can train together, interacting with each other 

in the virtual environment. 

NPSNET IV is the most current version of the evolving NPSNET simulation 

system. "The architecture uses BSD 4.3 socket-based interprocess communication (IPC) to 



provide a clear, easily used, and well-documented network interface. NPSNET IV, the 

simulation application, is tailored with efficient mechanisms to map DIS data to NPSNET 

data structures. The DIS network library that was developed through previous research at 

NPS resulted in a network harness for DIS applications. NPSNET further provides a three 

dimensional virtual world (VW) on Silicon Graphics workstations" [ZESW93]. 

Previous work with NPSNET has shown the viability of using a virtual environment 

for shipboard training. NPSNET also shows that the same training accomplished by larger 

simulators can be done in a low-cost, workstation based environment. While focusing on 

the fundamental three-dimensional nature of team training environments and of human 

perception, virtual environments using NPSNET have been shown to be excellent means 

for both shiphandling and damage control [MCD095] [OBYR95]. The success achieved 

here drives the idea of extending the research into other areas, particularly combat systems. 

This research is an attempt to expand the scope of NPSNET's current implementation, 

which is primarily geared toward ground-based forces and operations, to include naval 

assets as weapons platforms. 

C.   OBJECTIVE 

The objective of this thesis is to augment the existing NPSNET naval asset with a 

functional Combat Information Center (CIC) and a weapons capability to produce a ship 

virtual environment for combat systems training. This environment encompasses the best 

attributes found in real-life and simulator training while offering new advantages of 

onboard remote operation feasibility and portability. The prototype produced is of an 

interactive, real-time, networked, virtual Combat Information Center which can be 

installed on board Navy ships. This prototype can then be evaluated for its effectiveness in 

training personnel. Additionally, the prototype allows for multiple users to participate 

within the same scenario or environment. This is key to proper team training. At the same 

time, multiple users enhances the concept of apprenticeship training. Recruits receiving 



their introduction to spaces and equipment can enter the virtual environment as an observer 

and see first hand the operations and functions they will be expected to perform. 

The CIC trainer is representative of a real ship's CIC. It is built to generically 

simulate actual function and operation of a ships radar and weapons control center. This 

virtual environment is meant to augment current training methods by offering environment 

familiarization and new skills gained through the experience of interacting and operating 

with the virtual environment. 

D.   SUMMARY OF CHAPTERS 

The remainder of the thesis is broken down as follows: 

• Chapter II comments on previous research in developing virtual environments, 

particularly NPSNET. 

• Chapter III offers a system overview of the CICVET ship project. 

• Chapter IV discusses the development tools used to build CICVET. 

• Chapter V details the implementation of large screen displays. 

• Chapter VI presents the approach taken to create a functioning radar within the 

virtual environment. 

• Chapter VII describes the construction of a weapons interface panel. 

• Chapter VIII explains the alterations made to NPSNET weapon launch and flight. 

• Chapter IX provides a final discussion of the results of this thesis and describes 

follow-on work to be accomplished. 



II. PREVIOUS RESEARCH 

This chapter briefly examines the research efforts made in the development of 

virtual environments at the Naval Postgraduate School. Further, it focuses on the 

distributed computing issues involved with building NPSNET, in particular the naval ship 

entity. 

A. NPSNET 

NPSNET is the fundamental platform by which faculty, staff, and students of the 

Naval Postgraduate School implement various areas of research in networked virtual 

environments. Implemented on commercial-off-the-shelf SGI (Silicon Graphics IRIS) 

workstations, it is designed to show that multi-player networked battlefield simulation is 

feasible for both training and evaluations. Users can inhabit and interact within the 

simulation over local area networks or multicast over the Internet's MBONE (Multi-cast 

Backbone). Originally intended for use in Army simulations, recent developments include 

creation of naval assets and continued research is being steered toward naval training. 

NPSNET communicates using the DIS (Distributed Interactive Simulation) 

network protocol, allowing communication with other simulators that also use the DIS 

standard. DIS evolved from SIMNET (Simulation Network), a distributed interactive 

simulations standard developed by DARPA in 1985 [LOCK94]. It utilizes many types of 

Protocol Data Units (PDU) to transmit information between simulators. Each PDU is used 

for a specific purpose, and encompasses all aspects of a simulation. The DIS PDU's allow 

the developing events of a simulation to be shared among different host sites. 

B. MCDOWELL and KING: Virtual Shipboard 

In 1995, Perry McDowell and Tony King showed with their thesis that a prototype 

shipboard virtual environment was feasible [MCD095]. They constructed a ship model 

based on the Antares, a roll-on/roll-off ship. By storing the model in a hierarchical data 

structure and utilizing an algorithm for determining potentially visible sets, they 



successfully demonstrated that a large model database representing a ship could be 

visualized at real-time, interactive frame rates. 

The choice of which model to use was driven by several factors, the most important 

ended up being availability. In an ideal world, models of actual naval vessels would be used 

for rendering within the simulation. Seemingly, this process would entail converting CAD 

(Computer Aided Design) data of navy platforms into a polygonally-based database that 

could be understood and rendered by three-dimensional visualization software. McDowell 

and King could not obtain such data in time for their study. Thus, they opted to utilize data 

from the Antares, a non-warfare platform that was under design. This model served as the 

basis for implementing environments that would be representative of warships. Initially, 

the model consisted of approximately 2,000 polygons but after interior spaces, such as a 

bridge, an engineering space and a combat information center, were added, the database 

increased in size by over a factor of 10. Using the Multigen modeling tool, McDowell and 

King transformed the ship into a hierarchical data structure that was consistent with Silicon 

Graphics' IRIS Performer, the rendering software of SGI workstations[MCD095]. 

In order to provide as realistic an environment as possible, various techniques were 

used to maximize performance of the database. Combining both Multigen's and 

Performer's level of detail features shrunk the rendering time by offering alternatives for 

visible objects in a scene. These alternatives provided different aspects of an object based 

on factors such as how far from the viewpoint were the objects. The further away the less 

detail need be included in the object. Another enhancement method utilized was instancing. 

This is the ability to maintain only one geometry for an object in memory even though there 

may be greater than one of these objects in the scene. Thus, performance increases as the 

additional copies are not loaded into memory. Realism was boosted by use of texturing, 

dynamic objects, and switch objects. Texturing entails mapping actual scanned images onto 

the geometry in the scene to make objects appear as they do in the real world. Both dynamic 

objects and switch objects are attributes of the Performer hierarchy which allow scene 

motion and object removal, addition, and replacement. 



Once realistic interior spaces were developed, research turned to showing how the 

environment could be suited for training. In the engineering space, functionality for 

representing casualties was implemented-- one a steam leak and another a fuel oil leak/fire. 

Users in the space, represented by a non-articulated human entity, could manipulate fire- 

fighting equipment, such as halon discharge, nozzles, and ventilation controls, or other 

objects, such as steam/fuel oil valves. The point demonstrated was that a virtual 

environment could simulate casualties with more realism than current shipboard methods, 

such as red flags representing fire.[MCD095] 

An additional feature for training was the path walk-thru. This was meant to show 

how the virtual ship could be used as a familiarization for newly assigned personnel, thus 

eliminating much of the time these crewmembers would require simply acquainting 

themselves with the ship.[MCD095] 

Additionally, the VE (virtual environment) was networked allowing for multiple 

users to inhabit the world and interact with each other. Features such as an elaborate 

collision detection scheme, environmental effects (smoke from fires), HMD (head- 

mounted display) inter-operability, and various training scenarios were implemented in 

order to provide an extensive shipboard atmosphere. The research left many areas open for 

future work, including functionality of other spaces, with the combat information center of 

particular import to this thesis. 

C.   O'BYRNE: DC VET 

James O'Byrne followed up on the work of McDowell and King. His goal was to 

expand the casualty functions of the engineering spaces into a full-fledged Damage Control 

Virtual Environment (DC VET). By improving the realism, the DC VET offers a new 

training method that complements or supplants current methods. Providing a bridge 

between the gap in school training and performance aboard ship was the objective. 

The DC VET was designed to train damage control teams in as realistic an 

environment as possible. To this end, embellishments were made to increase the interaction 



and responses perceivable by the user. An articulated human replaced the human entity 

used in previous simulations. Increased ability for the human to manipulate objects was 

added as well as better techniques for collision detection. Sound was added to augment the 

natural perceptions of the environment. Alarms, bells, and IMC announcements are just a 

sample of the aural effects invoked. [OBYR95] 

Along with sharing a common motivation with this thesis, the O'Byrne work is 

important because of the introduction of an articulated human into the environment. This 

is essential if the VE is to be suitable for training. O'Byrne replaced the previous 3-D 

human model, which lacked movement and was used only as a visual aid for the user's 

(R) location, with a model utilizing the Jack Motion Library of the University of 

Pennsylvania. This addition has added immensely to the perceptual content of the damage 

control environment. Players can see one another interacting with the environment. One 

user can watch another open and close a door, or reach for objects or users can gesture to 

each other. 

D.   NOBLES and GARROVA: Shiphandling Simulator 

In June 1995, Joseph Nobles and James Garrova tackled the problem of ship- 

handling training for junior officers. They point out that training for officers-of-the-deck 

suffers from the same problems as discussed previously. Desiring to offer an alternative to 

large-scale simulators, their objective was to implement a ship-handling trainer that could 

be run from a single, high-speed workstation such as a Silicon Graphics Inc. Reality Engine 

series model. Their result was SHIPSIM, an interactive networked real-time virtual 

environment for maneuvering a ship in various evolutions and suitable for shipboard 

installation [NOBL95]. 

SHIPSIM uses a split-screen configuration of a single monitor for its exercises with 

part of the screen dedicated to a view of the ship's surroundings and the other portion 

containing a graphical user interface for ship's controls. It also possesses a distributed 

network capability which allows multiple ships to interact within the same scenario. This 

10 



facilitates additional training evolutions, such as Underway Replenishment or DIVTACS, 

within the VE. 

SHIPSIM also has much in common with NPSNET. Ship entities in SHIPSIM 

communicate in the networked configuration via the DIS protocol, as do NPSNET entities. 

Both SHIPSM and NPSNET perform the same simulation loop steps, while allowing the 

multiprocessing of cull and draw processes. These facts made apparent that the integration 

of SHIPSIM and NPSNET would be inevitable [STEW96]. 

Though very successful in showing the ability to have low-cost, shipboard ship- 

handling simulators, SHIPSIM lacked in some areas, especially in taking advantage of 

many of the immersive qualities that virtual environments offer. These deficiencies drove 

future work that integrated SHIPSIM and NPSNET and included assimilation of the DC 

VET. 

E. STEWART: Integration of Naval Training Assets into NPSNET 

As previously mentioned, NPSNET is essentially an Army driven project for 

battlefield simulation. Coincident to much of the research implemented into NPSNET, 

some masters students with naval backgrounds developed independent work with a naval 

slant. Much of this work (some discussed above) was independent but had its basis in 

NPSNET. In March 1996, Bryan Stewart successfully combined the best features of the DC 

VET and SHIPSIM while linking the new environment into NPSNET. The new 

environment incorporated many features to increase the immersive feel, including sound, 

voice recognition of commands, and HMD capability. Perhaps the most important aspect 

of the Stewart research was the implementation of a capability for human entities to embark 

or debark ships or buildings that are themselves virtual environments [STEW96]. 

F. SUMMARY 

Prior to the work presented in this thesis, students had developed solutions to 

various problems associated with training navy personnel in today's world. Each had it's 

11 



own focus but all had as their foundation the need to expand the horizons of current training 

methods. Their work has resulted in an extremely realistic ship virtual environment that has 

great features for shiphandling and damage control training. However, one factor that was 

sorely lacking was an emphasis on the mission of today's naval vessels - projection of 

power. Much of the training aboard ships is geared toward the proper and efficient 

operation of the many weapons systems aboard. In order to fully realize the advantages of 

using a virtual ship, weapons and weapons control capabilities are a must. This is the 

driving factor behind the research presented here. 

12 



III. SYSTEM OVERVIEW 

A.   THE NAVY CIC 

The NPSNET Combat Information Center Virtual Environment is designed to 

reflect the functions of naval warship CICs. The combat information center aboard ship acts 

as the nerve center when the ship is in a warfighting role. It is here where tactical decisions 

are made and actions are taken that allow a ship to carry out her mission, be it sea control, 

overseas presence, sea-line-of-communication interdiction or projection of power. It 

provides a central location for a commanding officer or tactical action officer to evaluate 

the large amount of varied information necessary for proper command and control. The 

tasks conducted in CIC focus on two items: information and weapons. 

1. Information 

CIC handles information in a number of different ways, but each of the methods it 

uses can be grouped into one of the following four categories of information processing: 

gathering, display, dissemination, and evaluation. Together these categories represent the 

majority of the workload in the CIC. All watchstanders from bearing takers to missile 

engagement coordinators participate in this vital shipboard operation. In fact, barring actual 

hostilities, the processing of information is the single largest mission for a maritime asset. 

In order to successfully undertake the required tasks, modern naval ships combine 

technology and tradition to create realistic and accurate descriptions of both the tactical and 

strategic pictures. 

a.   Gathering 

Today's warship's are equipped with a variety of tools for the gathering of 

information. These include equipment that can collect information actively or passively. It 

also includes equipment for voice and electronic communications. Some sensors, such as 

search radars, electronic emission exploiters or helicopters, provide a direct means by 
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which a ship establishes a picture of its environment without having to rely on other entities 

to provide it. 

Surface and air search radars are perhaps the most obvious of shipboard 

information gathering methods (Figure 2). Perched on the highest points of the 

superstructure, radar enables a ship to "see" well beyond the visible horizon. In CIC, 

trained operators combine information provided by radars to present the best possible 

picture. Radar equipment comes in various types. As a minimum, an average-sized warship 

Figure 2: Air and Surface Search Radars 

will have one surface search and one air search radar, with perhaps a few fire control 

radars for the weapons it carries. But, this is a minimum. Typically, one can find both two 

dimensional and three dimensional air search radars, as well as additional surface search 
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radars. Fire control radars are not used in search roles but in a tracking or illumination 

capacity suitable for controlling weapon flight and targeting. 

The information gathered in CIC is not limited to that of hostile forces or 

other entities, such as airliners or merchant shipping. Radar information is also used for safe 

navigation. In fact, in cases of restricted visibility and maneuvering, CIC becomes the main 

navigation plot for the ship. 

There is, however, a major problem inherent to using radar. Its function is 

dependent on the emission of radiowave energy; energy that can be intercepted. Thus, ships 

have the additional capability for passive gathering of information. This is accomplished a 

few different ways. One is the use of equipment that can exploit the electromagnetic 

spectrum to detect emissions without revealing own ship position. Special electronic 

warfare specialists occupy positions in CIC that become extremely important in controlled 

emission environments. Their job is to collect and correlate as much spectrum information 

as they can and create databases of information for future uses. 

Passive collection can also be accomplished across network and 

communication links. Today warships share the data they assemble across links established 

over radio waves or through the use of satellites. Onboard computers receive this 

information and data personnelmen and operations specialists compile it with their console 

interfaces. Specially trained in link operations, some CIC personnel are solely responsible 

for processing data that can be regional, theater, or world-wide. 

b.   Display and Dissemination 

Once collected the information is useless unless it is displayed and 

distributed to appropriate locations. In CIC, this is achieved by means as varied as grease 

pencil tote boards, sound-powered phones, computer-operated consoles, and large screen 
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CRT displays. The goal is to provide all shipboard stations with the information necessary 

for each station to develop a clear tactical picture. 

For example, a surface warfare coordination officer in CIC would have a 

number of CIC personnel working for him. These would include surface trackers, link 

operators, bearing plotters, electronic warfare (EW) technicians, as well as the surface 

weapon control operators. The surface tracker and link operator collaborate in determining 

what surface contacts may be. The tracker will display symbology over a radar return that 

will identify it as friendly, hostile or unknown. This identification most likely is correlated 

through link information or voice communication by the link operator. The tracker is also 

responsible for ensuring that sufficient updates are made so that bearing, range, course, and 

speed for the contact are accurate. His input shows throughout the CIC on various repeaters 

as well as being transmitted through a link to other ships. Unique track numbers are 

assigned and used so that no confusion arises as to which contact is which. Meanwhile, 

plotters plot EW information that will aid in the identification of unknown contacts. 

All this information is made available to a wide audience. Track information 

is displayed on weapons consoles and written on tote boards. Wall mounted large screen 

displays give access to the information at a glance. Repeaters on the bridge and in radar 

rooms allow others such as the Officer-of-the-Deck to "see" the picture develop. Once 

disseminated and displayed, the information must be evaluated. 

c.    Evaluation 

The Commanding Officer or perhaps an appointed tactical officer makes the 

ultimate operational decisions for his ship. It is his evaluation of the information that is the 

most important. However, he relies on everyone aboard to conduct their own evaluations; 

radar trackers decide what radar returns are valid, EWs determine electronic signatures for 
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contacts, and Warfare Coordinators label and prioritize threats. The combined evaluations 

or reading of the data become the basis for the use of weapons. 

2.  Weapons 

Unless actual hostilities have broken out, the majority of the resources of the CIC 

are steered toward the processing of information. However, a ship must always be prepared 

to act. It does so with its armament. 

Like shipboard sensors, there are many different weapons available to a 

Commanding Officer, ranging from 0.76 caliber machine guns of the close-in-weapons- 

system to long range guided missiles. Centralizing control of the weapon systems is another 

function of the Combat Information Center. Many of the same consoles used for display of 

information are also weapons control consoles. This dual duty is further enhanced by the 

programmability of the consoles. This adds the capability for one console to be configured 

to interface with different information and weapons systems. Thus a tactical engagement 

officer could easily switch from a surface to air picture in seconds. 

Continuing the above discussion of CIC operation, the Surface Warfare 

Coordinator, satisfied the information he has received is valid and under orders, begins the 

process of engagement. Together with a surface missile operator, he plans an engagement 

using his console to construct a salvo and flight plan. Their plans are repeated at tactical 

and command consoles in support of the command-by-negation concept; if those with 

launch approval don't approve, then plans are scrubbed and reworked. 

B.   DESIGN PHILOSOPHY 

The CICVET was created to reflect the primary functions of a CIC and to increase 

the capability of naval assets within NPSNET. By implementing sensors and weapons, 

users within the ship VE can perform operational training and weapon exercises within the 

virtual battlefield. 

The implementation of a functional CIC began with the framework provided in the 

Shipboard Simulator. This simulator was the culmination of previous work to incorporate 
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a Navy into the NPSNET environment. The Shipboard Simulator allows ship entities to 

interact with other networked land, air and sea vehicles, while at the same time allowing 

human entities to mount and remotely control the vehicles [STEW96]. The framework also 

provided the static models of a CIC interior, including displays and consoles. 

C.   SENSORS 

1. Large Screen Displays 

Within NPSNET, both human entities and ship entities inherit certain functions by 

virtue of the parent classes from which they were derived. While the majority of these 

member functions are essential for full incorporation within the environment, some 

produce artificial and non-realistic capabilities. For example, previously the human entity 

had the capability of determining positions of dynamic entities within the world through 

the use of a heads-up display (HUD). This HUD could be toggled on or off regardless of 

the human's location. The HUD uses icon symbology and fixes the icons dependent on the 

transmitted locations of the networked entities. While aiding in giving a sense of direction, 

its use as a training aid is artificial and could be detrimental for the training of anyone save 

pilots. A perhaps more realistic approach is to provide the location information within the 

world itself. In the context of a ship's CIC, the HUD data equates to a large screen display 

(LSD) reflecting the link information available to today's ships at sea. Presenting the 

information in such a way simulates the real-world links military assets share. Icon data, 

while still read in the same manner, takes on a connotative meaning that has an equivalent 

in the real-world. 

2. Radar 

Aside from the general direction and range information provided when the HUD is 

active, entities have little recourse in searching for other entities. Typically, scenarios 

demonstrate the use of the HUD to steer the visual location of entities. This type of search 

is impractical for naval use since most of a ship's engagements occur over-the-horizon and 
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involve long/medium range missiles or third-party-targeting. One solution would be to 

obtain more accurate position information on dynamic entities; information that could 

establish a fire control solution. This, however, ignores some real world uncertainty that is 

present when attacking from distant locations. Obtaining entity positions for a fire control 

solution from a network where updates are required for proper graphical coordination 

between entities would be like shooting fish in a barrel; a miss seems unlikely. 

Additionally, position information is only relayed for dynamic objects. Static objects 

present no obstacle. Thus aircraft could not fly nap-of-earih, shielding themselves with 

terrain, nor could ships duck behind islands or hide amongst oil derricks, as any ship driver 

in the Persian Gulf has experienced. With a capability to detect all objects, ship entities 

could navigate unfamiliar waters or simulate restricted visibility for shiphandling. 

Implementing such a capability requires a look at what happens in the fleet. Since 

radar is the primary active way of accruing such information, installing a functioning, albeit 

simulation, radar was of utmost importance in the CICVET. The implementation results in 

data suitable for fire control or navigation and mirrors closely real world operation. 

D.   WEAPONS 

1. Weapon Control Console 

Creating a naval asset that can pose a threat in the virtual battlefield began by 

examining methods by which to interface with, and control, weapons. To create the most 

realistic VE console, users inside the CIC should be able to seat themselves at an operating 

weapons control console (WCC). This is opposed to simply providing a 2D interface, 

remote and independent of the environment. The implementation in the CICVET is a 

compromise, combining aspects of both methods. The compromise follows from the 

realization that there are limitations to the creation of a console in the world. These 

limitations are on the sufficient detail and interaction required to accurately simulate a 

WCC while maintaining adequate frame, interaction, and response rates. Elementary 

picking capabilities and limited articulation of human entities aside, the biggest restriction 
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came in the maintaining of an appropriate frame rate within the world. The memory 

requirements and computations necessary, when implemented in the NPSNET code, 

created a noticeable slowdown in frame rate which equates to detrimental effects for the 

user. 

The result is a weapons interface that is controlled by a separate process but is 

initiated from within the world. This control panel communicates with the NPSNET ship 

and human entities through the use of a datapool. The datapool is an area of shared memory 

accessible to any processes that "know" the identification of the appropriate memory block. 

Via the datapool, NPSNET relates information about the world to the interface for display 

and interaction. 

2. Weapons 

The ability for the NPSNET ship entity to fire weapons is inherited as a derived 

class of entities. Both missiles and guns are available. However, the previous 

implementation pays no regard to the unique aspects associated with maritime weapons. 

These include vertical launch, waypoint maneuvering, sensor guidance, and third party 

targeting. 

Weapons fired within NPSNET were obviously created based on air and ground 

targeting concepts. In effect they are fired based on visual targeting. Entities search the 

world for hostile forces and, using cross hairs centered on the point of view, fire weapons. 

These weapons fly trajectories appropriate to their type (missile/gun) and hopefully 

intercept the other entities position for a kill. This type of weapon control does not translate 

to shipboard use. In very few instances are naval weapons fired on visual information. 

Thus, a new functionality for NPSNET weapons had to be implemented. 

Rounds fired from naval guns differ little from those in NPSNET. However, the 

slewing and training of the gun, and controlling the flight of the round, must be associated 

with information gained from other than visual means. Human entities must have the 

capability to point a gun along an arbitrary bearing and range. Similarly, missiles should 

20 



have the ability for coordinate launch, or flying to points in space. Without a visual input, 

this means that the missiles should be programmable prior to launch and, for further 

realism, should have a search capability of their own. 

The CICVET accomplishes the above functionalities. Using the weapons control 

panel, both guns and missiles can be targeted using world coordinates. No entity 

information is used other than that of the driven entity and that returned by the simulated 

radar. 

E.   SUMMARY 

The design of the Combat Information Center virtual environment parallels the 

capabilities found aboard today's warships, taking into account both information and 

weapon resources. It introduces new methods for simulating sensor technology, a radar; 

information display/dissemination, LSDs; and weapon interface, the WCC. The VE is built 

upon the NPSNET framework and has its foundations in the previous research that resulted 

in a naval entity within the virtual battlefield. 
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IV. DEVELOPMENT TOOLS 

A.   OPENGL 

"OpenGL is a software interface to graphics hardware" [OPEN93]. OpenGL is a 

graphic library developed by Silicon Graphics, Inc.(SGI) with the open architecture idea in 

mind. In other words, it is a hardware independent API which senses the current 

architecture and translates the software calls to the instructions of existing hardware. 

OpenGL is designed as a streamlined, hardware-independent interface to be implemented 

on many different hardware platforms. To achieve these qualities, no commands for 

performing windowing tasks or obtaining user input are included. It can perform all of the 

tasks in the software level, or leave some of them to the hardware, depending on the 

existing hardware. "OpenGL doesn't provide high-level commands for describing models 

of three-dimensional objects. With OpenGL, you must build up your desired model from a 

small set of geometric primitives - points, lines, and polygons" [OPEN93]. It has features 

like wireframe modeling, depth-cueing, antialiasing, flat and smooth shading, texture 

mapping, and lighting features. "OpenGL is a state machine. You put it into various states 

(or modes) that then remain in effect until you change them" [OPEN93]. OpenGL can be 

used in the following areas of interest; 

1. Using mathematical expressions to build shapes from geometric primitives like 

lines, points, and polygons. 

2. Mapping out objects in a three-dimensional scene and use the desired camera 

point to view the arranged geometric scene. 

3. Computing the color of objects dynamically depending on the environmental 

conditions. 

4. Displaying those mathematical expressions and colors on the screen by 

translating them into pixel information. This final and one of the most difficult jobs is 

named rasterization [OPEN93]. 
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B.   IRIS PERFORMER 

1. Description 

A product of SGI, IRIS Performer is a software toolkit for the development of real- 

time visual simulation and interactive graphic applications. Supporting the industry 

standard graphics library, OpenGL, Performer allows the creation of applications suited for 

optimal performance on SGI graphics hardware. 

2. Features 

a.Hierarchical database 

A visual database, also known as a scene, contains state information and 

geometry. A scene is organized into a hierarchical structure, specifically as a directed- 

acyclic graph as shown in (Figure 3).The scene hierarchy supplies definitions of how items 

in the database relate to one another. Additionally logical and spatial organization 

information of the database is also held within the same hierarchy. The scene hierarchy is 

traversed by visiting the nodes in depth-first order and operating on them. "IRIS Performer 

implements several types of database traversals, including application, clone, cull, delete, 

draw, flatten, and intersect" [IRIS95]. 

pfScene 

Figure 3: Database hierarchi of a Performer scene 

24 



The root of a visual database pfScene is viewed by a pfChannel, which is 

rendered to zpfPipeWindow by apflPipe. Process flow for a single-pipe system is shown in 

(Figure 4). The application constructs and modifies the scene definition (pfScene) 

associated with a channel. The traversal process associated with that channels's pfPipe 

traverses the scene graph, building an IRIS Performer libpr display list. As shown in the 

(Figure 4), this display list is used as input to the draw process that performs the actual 

graphics library action required to draw the image [IRIS95]. Any number of channel and 

pipe combinations are possible in IRIS Performer, however a minimum of one of each type 

is required. 

Ap plication- Scenen Travensal/Cull D rawn     F la me B uffern 

Pipeline CM 

Figure 4: Single Graphics Pipeline [IRIS95] 

b.Libraries 

IRIS Performer consists of basically four main libraries. Libpfis the main 

library which handles multiprocessed database traversal and rendering and also contains 

libpr which performs the  optimized rendering, state control, and other functions 
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fundamental to real-time graphics(Figure 5). Libpfdu is the library of scene geometry 

building tools which greatly facilitate the construction of database loaders and converters. 

Tools include a sophisticated triangle mesher and state sharing for high performance 

databases. Libpfutil and libpfui are utility-functions and user interface libraries respectively 

[IRIS95]. 

Figure 5: Performer libraries [IRIS95] 

c.Multiprocessing 

One of the most important features of IRIS Performer is its ability to use 

existing multiprocessor architecture to speed up real-time graphics applications. By 

dividing complex processes into small pieces it allows the processes to execute in parallel. 

"IRIS Performer uses multiprocessing to increase throughput for both rendering and 

intersection detection. Multiprocessing can also be used for tasks that run asynchronously 

from the main application like database management" [IRIS95]. Shared memory 

management is a big problem in multiprocessing. IRIS Performer partitioned those 

problems into three categories, as their solution. These categories are memory visibility, 

memory exclusion, and memory synchronization. 
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3. Execution 

Execution of a IRIS Performer scene follows certain steps in the process pipeline. 

Initialization and configuration of IRIS Performer is followed by setting up a pipe and a 

channel. Frame rate and synchronization, creating and loading the scene graph, and the 

simulation loop are the follow on steps of the initialization. 

a. Initialization and Configuration 

Initialization consists of two main levels, shared memory and 

multiprocessor initialization. Performer function pflnit() sets up the shared memory arena 

which is being used to share data among the applications, the visibility cull traversal, and 

the draw traversal, all of which can run in parallel on different processors. Another 

procedure pfConfigO starts up multiple processes, which allows visibility culling and 

drawing to run in parallel with the application process [IRIS95]. 

b. Setting Up a Pipe and a Channel 

A pfPipe variable represents an IRIS Performer software graphics pipeline. 

In IRIS Performer each rendering pipeline draws into one or more windows associated with 

a single Geometry. A channel is a rendering viewport into a pipe. A pipe can have many 

channels in it, but by default a channel occupies the full window of a pipe [IRIS95]. 

c. Frame Rate and Synchronization 

The frame rate is the number of times per second the application intends to 

draw the scene. The period for a frame must be an integer multiple of the video vertical 

retrace period, which is typically l/60th of a second. The synchronization mode or phase 

defines how the system behaves if drawing takes more than the requested time. pßync() 

delays the application until the next appropriate frame boundary [IRIS95]. 
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d. Creating and Loading the Scene Graph 

Database representations of models can exist in a variety of formats. IRIS 

Performer doesn't define a file format for a database; instead it supports extensible run-time 

scene definitions of sufficient generality to support many database formats [IRIS95]. You 

can create a database with any modeler then import it into a Performer view. Additionally 

when it comes to load the database, Performer keeps the original database hierarchy inside 

its own view. 

e. Simulation Loop 

After the pipes and channels are configured and the scene is loaded, the 

main simulation loop begins and manages scene updates, viewpoint updates, scene 

intersection inquiries, and image generation [IRIS95]. It has two main control functions; 

pßync() to put the process to sleep until the next frame boundary, and pflFrame() to initiate 

the next cull traversal. Time consuming calculations are best placed after pfFrame() but 

before pßync() while other small calculations can be executed in the remaining half cycle. 

C.   MULTIGEN 

1. Description 

MultiGen is a three dimensional graphics editor that lets you create and modify 

visual system database in an intuitive "what you see is what you get" environment. 

Multigen has been designed to support many different visual system formats [MULT95]. 

2. Features 

MultiGen is used to create, edit and view 3D scenes (databases) used in visual 

simulation. It allows a scene to be viewed as it will appear on the image generator, 

including Silicon Graphics workstations. Unlike general purpose modeling tools, MultiGen 

is optimized to handle level of detail switching, instancing, hierarchy, and external model 

references. Modelers can easily create and edit 3D objects, database hierarchies and 
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attributes by direct geographical manipulation. Geometry, color, texture, shading, and 

application-specific attribute information is stored in the MultiGen database for 

interpretation by the real-time application code. 

D.   RAPIDAPP 

1. Description 

RapidApp is an application builder, a component of the Developer Magic 

Application Development Environment for developing applications to run on Silicon 

Graphics workstations. This integrated development environment provides tools for rapid 

application development. RapidApp uses IRIS IM container widgets, a collection of 

containers that provide a variety of ways to organize interface elements. To maintain their 

organizational features, many containers keep a tight control over their child elements, 

often determining their size and position by the order in which the elements were created. 

2. Features 

RapidApp is a graphical tool which allows developers to interactively design the 

user interface portion of their application. It generates C++ code utilizing IRIS ViewKitfor 

each user interface component as well as the overall application framework. As with all 

ViewKit-based applications, IRIS IM (Motif) widgets are used at the bottom level as the 

basic building blocks for the user interface. To speed the development cycle RapidApp is 

integrated with a number of the Developer Magic tools, including: cvd, cvstatic, cvbuild, 

Delta C++, and Smart Build. This allows developers to quickly design, compile, and test 

object-oriented applications. Another benefit of RapidApp is the built-in support for 

producing an application ready to integrate with the IndigoMagic Desktop Environment. 

This involves automatically generating things like an ftr file for file-typing-rules, an icon 

for the desktop, inst image information, etc. 

Finally, RapidApp also provides easy access to using SGI-specific widgets and 

components within an application. For instance, an OpenGL widget can be added to a 
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program without having to know many of the underlying details of integrating OpenGL and 

X. 
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V. LSD IMPLEMENTATION 

A. SEARCHING MODEL TREES 

With little or no knowledge of how the ship model was put together, we began by 

familiarizing ourselves with Multigen, the model software used in previous theses to 

construct the interior spaces of the Antares ship model. Both Multigen and Performer 

arrange a model's data in a tree structure with actual geometry contained in leaf nodes. Both 

also allow the naming of nodes for easy reference. By comparing the tree of the ship model 

in Multigen with that of the one generated in Performer (we accomplished this by using the 

"Show Tree" function of the Performer example program Perfly) we were able to determine 

that Performer maintained the same names used in Multigen for all nodes except for those 

containing actual geometry (or the equivalent of a pfGeode in Performer). A Performer 

programming attempt to search for the actual polygon was unsuccessful verifying that, 

indeed, the Multigen name for this node was not maintained when loaded by Performer 

calls. Our hope had been that all names would be carried over into Performer, allowing for 

the simple traversal of the model tree in a search for the name of the polygon representing 

a particular LSD. This not being the case, we were only able to search using node name 

down to two levels above the actual geometry. The "found" node was the equivalent of a 

Performer pfGroup node, used to group together nodes in logical clusters. Once we had 

access, via pointer, to the CIC and LSD group nodes and not being able to proceed further 

down the tree by name, we proceeded by child number. Each pfGroup node has a member 

function returning the number of children. Being indexed sequentially, a particular child 

can be returned if its index is known. Retrieving the index for the LSD polygon from the 

Multigen tree, we were able to access the LSD geometry node. 

B. INFORMATION DISPLAY 

The next step was to figure out how to actually display information on the LSD. As 

discussed previously, NPSNET already produced location information on dynamic entities 
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and displayed it in the form of a HUD. This same information drives the drawing of the 

LSD. 

1. Locating new geometry 

After finding the correct node that houses the LSD model geometry, the trick was 

how to and where to locate the new geometry. Performer does not provide facilities for 

easily recovering the coordinates for particular geometry sets. Each GeoSet can return 

pointers to the blocks of memory that contain the coordinates, but the order of the 

coordinates, number of vertices, primitive type, and number of primitives must be queried 

separately. And, while Performer does not allow for direct dynamic change of vertex 

coordinates, entire GeoSets can be replaced with others. Once we identified the correct 

vertex coordinates, we used normal calculations to determine proper placement of the new 

geometry. 

Once the coordinates are found, we calculate the surface normal, the center, and the 

radius of the biggest circle that can fit in LSD. Figure 6 demonstrates the method used to 

retrieve the four corner coordinates of an LSD and the calculation of the surface normal. 

The surface normal is computed by determining two vectors that lie on the plane of the 

LSD. These vectors (variables first and second in Figure 6) are at right angles to one 

another and are of unit length. The normal, representing the orientation in space of the LSD, 

is the cross product of the two planar vectors. 

1 pfGetGSetAttrLists(geo, PFGS_COORD3, (void**)&coords, &icoords); 
2 
3 pfVec3 first; 
4 pfSetVec3(first, (coords[0][0] - coords[l][0]), 
5 (coords[0][l] - coords[l][l]), 
6 (coords[0][2] - coords[l][2])); 
7 pfNormalizeVec3(first); 
8 pfVec3 second; 
9 pfSetVec3(second, (coords[0][0] - coords[3][0]), 

10 (coords[0][l] - coords[3][l]), 
11 (coords[0][2] - coords[3][2])); 
12 pfNormalizeVec3(second); 
13 pfCrossVec3(norms, first, second); 

Figure 6: Sample code describing surface normal calculations 
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Figure 7 details the calculation of the LSD center and the determination of the 

radius of the largest circle that will fit within the surface. Along with the normal, which 

describes orientation, the center, in world coordinates, gives the absolute position about 

which other objects can be located. 

1 //Calculate the center of LSD 
2 templ[0] = (coords[0][0] + coords[l][0]) / 2.0; 
3 templ[l] = (coords[0][l] + coords[l][l]) / 2.0; 
4 templ[2] = (coords[0][2] + coords[l][2]) / 2.0; 
5 temp2[0] = (coords[3][0] + coords[2][0]) / 2.0; 
6 temp2[l] = (coords[3][l] + coords[2][l]) /2.0; 
7 temp2[2] = (coords[3][2] + coords[2][2]) / 2.0; 
8 center[0] = (templ[0] + temp2[0]) / 2.0 + normsfO] * 0.01; 
9 center[l] = (templ[l] + temp2[l]) / 2.0 + norms[l] * 0.01; 

10 center[2] = (templ[2] + temp2[2]) /2.0 + norms[2] * 0.01; 
11 
12 //Calculate the radius of LSD 
13 radius = sqrt(((templ[0] - center[0]) * (templ[0] - center[0])) + 
14 ((templfl] - centerfl]) * (templ[l] - center[l])) + 
15 ((templ[2] - center[2]) * (templ[2] - center[2]))); 

Figure 7: Sample code demonstrating center and radius calculation 

2. Range rings 

The first geometric objects added to the LSD were rings representing ranges from 

the ship. The rings were constructed using Performer geometry building functions. The 

default object was a unit circle at position (0.0,0.0, 0.0) with normal vector (0.0, 0.0,1.0). 

To co-locate the rings with the LSD we translate it to the center of the LSD, scale it by the 

radius calculated in the previous step, then rotate it. We need to calculate the rotation axis 

and angle. The cross product of the normals (unit circle and LSD) gives the rotation axis, 

while the arcsin of length of cross product gives the rotation angle. After the rotation, we 

translate the rings a little bit further in the direction of LSD's normal to prevent 

"flimmering" or the effects of z-buffering and co-planar geometry. Finally, the ring 

geometry is added to the parent node of the LSD. This ensures that movements of the ship 

will affect the rings, leaving them in the same relative location. The ranges the rings 

represent are presented as labels on the LSD. 
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3. Icons 

aSymbology 

The HUD employed by other entities in NPSNET uses special icons to 

represent not only approximate range and direction but also to indicate what type the 

remote entity is. The icons are drawn from a special bitmap font. Since the HUD is 

constructed from direct OpenGL calls, using a 2D orthographic projection, the icons can 

simply be output as a text string at window coordinates that equate to a relative position in 

the world. Using a similar methodology for the LSD is impossible since there are no 

facilities for drawing text in three-space. Performer does offer a special node, pfFont, for 

three dimensional text, but current implementation (Performer 2.0) has only two native 

fonts available and no facility for importing bitmap fonts. 

The solution was to build icons as 3D objects suitable for import into a 

Performer hierarchy. The icons exist as individual files that are read during the loading of 

models. The models are not attached to the scene but rather exist in an array structure that 

is indexed in the same way the icon fonts are in the HUD code. Whenever an entity enters 

the world a new icon is attached to the scene and its geometry is created by copying the 

appropriate symbol from the icon model array. Matching the array indices to the same ones 

used by the HUD enables the reuse of code. No new determinations of entity type need be 

made. If an entity drops out its icon is removed from the scene and deleted, returning the 

memory it used to the heap. 

b.Positioning 

Situating the icons on the LSD happens in much the same way as the rings 

were located. A linked list data structure is used to maintain information on the dynamic 

objects interacting within the virtual world. Each time through the main simulation loop a 

check is made to determine if any entities have joined or left the simulation. If so, 
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appropriate alterations are made to the linked list. During the update entity stage, this list 

is read and position information is obtained for each entity. Since the information is in true 

world coordinates a conversion is required to make a position relative to the ship's location. 

The range is ratioed to fit within the area of the LSD. 

C.   SUMMARY 

The large screen display is used to represent information on other entities 

participating within the same simulation. An argument can be made that absolute 

knowledge of the whereabouts of other entities is unrealistic and contrary to any real world 

functionalities. However, today assets can share information in real-time. The LSD 

information can be viewed as information obtained from satellite or electromagnetic link- 

ups. In fact, simple changes to the algorithm determining which vehicles to display can be 

made to more genuinely reflect operations. Vehicles could be entered only by entities that 

have actual knowledge of its existence, i.e. visual or radar information. 

Locating specific geometry and obtaining its coordinates is essential to create a 

dynamic environment representative of real-life CICs. The ability to manipulate objects on 

the fly is required to properly display the information collected. Using vector notation for 

defining planes and normals for orientation, new geometry can be co-located with existing 

objects. 
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VI. RADAR DEVELOPMENT 

A. MOTIVATION 

Aboard ship, radar plays a major role in the gathering of information. To properly 

replicate a CIC working environment, a suitable rendition of radar needed to be 

implemented. Chapter III touches upon some of the differences in the information 

generated by previous NPSNET versions and that required by ships. 

There are two main reasons for creating the CICVET radar. The first is that 

simulating a radar adds some uncertainty to the information. No longer are exact entity 

positions used. Now, in the absence of link information, only if the ship entity itself detects 

an object will it be able to see it. In fact, entities can exploit this fact to hide their position 

and conduct clandestine operations. This will add a qualitative element to the training of 

tracking operators and radar users. 

The second justification for radar in NPSNET is that it allows for knowledge of 

static objects within the world. Because the method used to simulate the radar makes no 

distinction different between dynamic and static objects, the radar "paints" images of 

everything it hits. In particular, this functionality works well for land masses, enabling 

navigation by other than visual means. 

B. METHOD 

1. Native Performer Collision Detection 

The radar is built upon the intersection functions provided by IRIS Performer's 

libraries. Performer's collision detection is centered around a structure called a pfSegSet 

This data record houses information needed to construct groups of line segments. Up to 32 

of these line segments can be defined within a single pfSegSet. During an intersection 

traversal, these line segments are compared to the scene database and collision information 

is returned. 
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Within a pfSegSet, two bit masks exist to further delineate information provided 

during the intersection traversal. The active mask is used to individually turn on and offline 

segments. The isect mask is used to discriminate intersections. As a binary number it can 

be set to selectively decide which objects a traversal will intersect with. All objects within 

a scene also have their own intersection mask. Two main tests are conducted during 

intersections. The first is physical, answering the question "Does this line segment pass 

through an element?" The element can be set to a geometry's bounding volumes or to its 

actual primitives. The second test is for discrimination, answering, "Is this intersection of 

the type requested?" The discrimination is carried out by a bitwise AND of the traversal 

and object intersection masks. If the boolean AND results in something other than all zeros, 

the intersection information is saved for use in the application process. 

The structure used to save this information is a pfHIT in Performer. After a 

successful intersection, these objects hold data including: the coordinates of the 

intersection, the normal vector at the point of intersection, the transformation matrix of the 

intersected object (used for converting intersection points to world coordinates), and 

identification information of the intersected node. By default, only one, the first, 

intersection is determined. This, however, is easily changed with traversal modes and 

callback functions. Extracting the information entails submitting queries to the pfHit 

structure, which in turn replies with the appropriate data response. 

2. Intersections for Radar Simulation 

The design for the CICVET radar encapsulates many of the operating 

characteristics of shipboard radar, but at the same time it is in no way physically modeled. 

The strategy for radar implementation was driven by the desire to approximate the 

information radar gives in an effort to augment NPSNET's capabilities. While successful, 

the radar has limitations. Radar enhancements such as physical modeling is left for future 

work. 
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a.Intersection test description 

Numerous design methods were examined before the final construction was 

decided upon. These methods were tested first as stand alone programs, in an effort to 

demonstrate their effectiveness. Then the code for each was inserted into NPSNET for 

evaluation of their performance. One goal when creating the radar was to impact the frame 

rate as little as possible. Thus, performance between the various methods was crudely 

determined using an approximation of frame rate. A radar sweep was placed within the 

scene whose azimuth angle was incremented for each pass of the draw process. This 

movement gives an idea of the speed of the NPSNET process. Comparing the sweep cycle 

to the clock estimated the change in frame rate between methods. 

The basic construction, upon which various radars were built, consists of a 

pfSegSet with a single line segment. Using a relative polar coordinate system, the line 

segment had one endpoint anchored at the ship's position with an initial azimuth of 0° and 

an elevation of 0°. The length of the segment was equivalent to 30 nautical miles (nm) in 

virtual world distance. This distance of 30nm is comparable to that of a nominal surface 

search radar found aboard ship. Each time through the draw process the line segment's 

direction would be changed, sweeping through each degree of azimuth. As the segment's 

direction changed the entire scene graph was traversed to determine which, if any, node 

geometry was intersected. The intersection points returned were placed in an area of shared 

memory for use in the display process. Chapter VII discusses this procedure. 

The pfSegSet has an intersection mask equivalent to 32 ones or 

OxFFFFFFFF in hexadecimal notation. With one exception, this enables the intersection 

discrimination test to be successful with all geometry when the bitwise AND is applied. 

Only if the geometry mask is all zeros will the discrimination fail. Also, within the pfSegSet 
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is a pointer to a callback function. For each intersection a line segment returns, the callback 

function is invoked. This enables greater discrimination capabilities. 

For instance, within the callback, a test is made that throws out any points 

within a particular distance (in the ship's case 300 meters). This ensures that no intersection 

points are saved that result from intersecting the geometry of the vehicle employing the 

radar. Another solution may have been to set the two intersection masks (the pfSeg's and 

the ship's) in such a way that the discrimination test failed. This idea, however, was 

discarded in favor of the more general first solution which allows for possible 

implementation of the radar on vehicles other than a ship. 

b.Radar along a single bearing 

Initially, the radar was created as one would find it in the real world. The 

line segment was positioned at a mast head location and tilted toward the ground. Then the 

angle of declination was decremented along a particular bearing. Figure 8 simplifies how 

this would work. The numbers represent the changing declination along a bearing. Though 

this shows only ten, a greater number would be required to achieve a fidelity adequate 

10    9 8    7 
I I 
step 

6    5    4    3    2    1 

Figure 8: Mast-mounted Radar 
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for searching. For instance, to achieve a step size (see Figure 8) often meters (arguably 

minimal for searching) while covering 30nm (approx. 55560 meters) means 5556 steps. 

This is quite a large number for a control structure such as a 'for loop' when degradation 

in frame rate is at stake. Even when using the maximum number of segments allowed per 

pfSegSet there are still roughly 175 steps required to cover the entire bearing out to 30nm. 

Another factor contributing to the disadvantages of this method is that all objects along a 

particular bearing would create a radar return disregarding any shielding effects of objects 

in front of one another. This is somewhat unrealistic. Though real-world radar has lobing 

effects and a beamwidth that allows some "seeing" past an object, for the most part once 

an object is hit the remainder of that bearing is obscured. With these ideas in mind, a 

second design, represented in Figure 9, was utilized. 

w 
Figure 9: CICVET Implementation 

The advantage of this composition is that no step size along the bearing is 

required, since the line segment extends along the full 30nm distance. This design, 

however, removes any chance of locating low-flying aircraft. To remedy this, for each 

bearing, the line segment was cycled through an elevation of 100 meters. The step size was 
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fixed to every two meters. This means that within 100m vertical distance only objects of 

less than two meters in height and flying directly between elevation lines would not be 

picked up by the radar. 

c.Multi-bearing sweeps 

With the above radar characteristics in place, the pfSegSet was swept 

through each degree of bearing around the ship's position. This produced a good quality 

picture of the objects in the world. However, it also had too large a gap at the farthest 

reaches of the radar. As can be seen in Table 1 column two, which lists the gaps at various 

ranges, this method is sorely lacking in accuracy of searching. For instance, at 30 nm an 

Tablel: Radar Gap Measurements 

Range in nautical 
miles 

Approx. Gap in 
meters (single line 

segment) 

Approx. Gap in 
meters (between 
line segments) 

30 969 30 

25 808 25 

20 646 20 

15 485 15 

10 323 10 

5 162 5 

object could conceivably be one kilometer across and not be picked up by the radar. Blind 

spots this large were unacceptable. An alteration was made using all 32 line segments 

available within the pfSegSet. By dividing the one degree angular spread between bearings 

into 32 pieces, an accuracy was achieved in meters roughly equivalent to the range in miles 

See Table 1, column three). 
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This incarnation produced a fidelity for accurate display of static objects 

such a land masses and for locating dynamic objects such as ships. At this point two 

obstacles still needed to be overcome. The first was that, though the radar produced 

satisfactory results, the sweep time (in this case the time the graphical display takes to 

sweep 360°) was much too slow in comparison to real world surface search radars. As an 

example, the SPS-55 radar, found on many U.S. warships has a sweep of 16 revolutions per 

minute. This means that an operator would not get a realistic feel from this display because 

the sweep would be much slower in the CICVET than at an actual radar repeater. The 

contributing factors to this slow down were not only the computation time for the 

intersection tests but also the communication time between the intersection process and the 

process displaying the returns. These processes are discussed in Chapter VII. 

The second stumbling block was that dynamic objects smaller than ship size 

(such as helicopters) could still be missed with current gaps between line segments. The 

solutions to both these seem diametrically opposed. Increasing sweep time lowers the 

possible accuracy while the reverse is true when trying to ensure smaller objects are found. 

This inverse relationship was avoided by developing a method that increased sweep time 

while decreasing accuracy only on the static objects within the world. A separate solution 

ensuring the location of dynamic objects, those of most importance, was implemented. 

3. Radar Interlace and Dynamic Object Search 

To increase the sweep times, the radar was interlaced. This entailed changing the 

step between bearings from 1° to 10°. After a completion of one full revolution, the next 

sweep would begin 1° from where the previous sweep began. As an illustration, consider a 

sweep beginning at azimuth 000°. The sweep would proceed every 10°, thus bearings 010°, 

020°, 030°,... 350° would be covered for this sweep. The next revolution would begin at 

001°, thus covering bearings 011°, 021°, 031°,... 351°. Sweeps would proceed in this 
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fashion until every bearing was checked. In this manner, the entire 360° would be checked 

every 10 sweeps. 

As a result, graphically, the sweep of the radar is more true to life. Even though each 

sweep of the CICVET radar produces 1/10th the data a real radar produces, this doesn't 

pose a problem within the VE when considering only static objects. These static objects 

under consideration are essentially land masses whose size in relation to the ship are 

significantly large enough that a hit every ten degrees is sufficient for determining and 

denoting its position. Additionally, if returns from previous sweeps are allowed to remain 

visible throughout the ten degree interlace then after the first ten sweeps a full picture of 

the world will be presented and refreshed as a appropriate. When considering dynamic 

objects this method would be unacceptable because of the large gaps in coverage. Dynamic 

objects are therefore handled differently. 

In order to ensure that dynamic objects are located, the world positions of the 

entities are cached each time through the draw process. A calculation is made to determine 

the bearing of the entity from the ship. For each bearing hit during a sweep a comparison 

is made to determine if any entities bearing is within a 10° sector of the current bearing. If 

so a special intersection test is made along the entities bearing. This is conducted, as 

opposed to simply placing a return at the entities location, to simulate the shielding effect. 

For instance, if a ship is located on the other side of an island we don't want it to have a 

return on the radar. 

C.   SUMMARY 

Simulating a functional radar within a virtual battlefield environment is essential, 

especially when incorporating maritime assets, as this is a primary method of information 

gathering. Additionally, many of the aspects of radars need to be incorporated to provide 

realistic simulation. CICVET uses native Performer intersection methods to implement the 

radar. The radar uses two different methodologies to deliver adequate performance in the 
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instances of static and dynamic object searching. The first, an interlaced bearing sweep, and 

the second, a dedicated sweep on dynamic object bearings. 
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VII. WEAPONS CONTROL CONSOLE 

A.   BACKGROUND 

With the large screen displays and driving elements of the radar in place, attention 

was turned toward the creation of shipboard weapons. The first step was to determine an 

appropriate interface by which an operator could both track contacts, determine weapon 

plans, and release weapons. Chapter El discusses the motivation behind the design 

philosophy of the weapons control console (WCC), in particular why the console was 

created as a separate process. Care was taken to incorporate many of the functions of WCCs 

found aboard ship. Figure 10 is an actual screen shot of the WCC utilized in CIC VET. The 

WCC can be broken into four major groups: the radar display (center), missile control 

(left), gun control (upper right), and own ship information (lower right). 

Figure 10: Weapons Control Console 
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The window and its widgets were created using RapidApp. RapidApp provides an 

easy method for creating a window and control buttons. Having more diverse widgets 

available than Performer, it provided more options by which to add functionality. 

RapidApp also builds the C++ code framework which drives the window. Functions simply 

need to be filled in with the code necessary to get a particular widget to act as you want it. 

B.   RADAR SCOPE 

1. Draw Window 

The center portion of the interface contains a large draw window. This window 

enables display of graphics created with the OpenGL architecture. It is the window by 

which radar returns from NPSNET are displayed. Setup as an orthographic projection, the 

display flattens three dimensional coordinates to two dimensions along the Z axis. Also 

because of the difference in the default orientations of OpenGL and Performer (See Figure 

11), porting coordinates directly from Performer into an OpenGL application results in a 

top-down view of the Performer world by the OpenGL program. This is the desirable view 

when talking about radar return display. For a 2D surface search radar there is no elevation 

information provided, thus this setup is ideal. 

2. Data Points 

a.pfDataPool 

The radar returns to be displayed must come from the radar implemented 

within NPSNET. Chapter VI discusses the particulars of how this works. Because this 

interface was built as a separate process, some form of communication had to be built in. 

We decided to do this in shared memory. Performer provides a class known as a pfDataPool 

for shared memory between processes. Objects of this class can contain any number of data 

structures along with a unique identifying string. Any process can acquire the information 
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Figure 11: Radar Repeater 

within the data pool as long as it knows the identifier. The memory location information is 

written as a file into a default directory with a name equivalent to the identifying string. 

Performer processes making an acquire simply read the location information from the file 

and access that area of memory. 
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This pfDataPool class also contains member functions implementing a 

locking mechanism. Thus the collision of processes accessing the data simultaneously is 

avoided. Without possession of the lock, a process is blocked and waits until the lock is free 

and it can proceed. Working this way protects the integrity of the shared information. 

Specifically, the datapool contains a number of different variables, the 

largest of which is a 360 X 1600 two dimensional array of points. The 360 represents one 

dimension for each azimuth the radar sweeps. The second dimension size, 1600, represents 

the maximum possible number of points that could be returned. Each bearing is actually 

thirty-two tine segments covering the 1° angular area. Because each of these is raised in 

elevation for 50 steps each bearing, the maximum points possible is 32 X 50 or 1600. 

b.Local storage 

Within the interface program, the data points are read from NPSNET by 

way of the shared memory area. These points are then used by a draw function which places 

green 'paints' at the appropriate location. The points placed into the pfDataPool, however, 

are associated with one line of bearing, the particular one NPSNET radar intersected on. To 

simulate a radar repeater many bearings of information must be retained. 

This is accomplished through the use of a dynamically linked list, where 

each node represents a point. Upon each read of the shared memory area, a new node is 

created and added to the end of the linked list. A field in the node's structure contains a float 

representing the age of the point. This age field is used to weight the color that the point 

should be drawn, eventually leading to black (no color), and thus it's removal from the list 

and the return of its memory. After the shared area has been read the newly appended list 

is passed into the draw process for display in the glDraw window. 
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3. Range Rings and Cursor 

To complete the radar display, two more functions were added for range rings and 

a mouse enabled cursor. Range rings are fixed at intervals to give the operator a quick 

glance at far a radar contact may be. For closer scrutiny a mouse enabled cursor can be used 

to place a cursor over the contact. The mouse position is read and converted to world 

coordinates and the true (or relative) bearing and range are displayed in the lower left of the 

radar scope. 

C.   MISSILE ENGAGEMENT SECTION 

1. Panel 

Figure 10 is a screen shot of the missile engagement section. This section is used 

for display and input of missile flight profiles. For CICVET purposes the NPSNET ship 

was provided a capability for launch of 16 surface-to-surface missiles. The status of each 

missile can be reflected in the missile engagement section. 

Four display windows contain latitude and longitude. One for selected target 

position and one each for flight waypoints. A toggle button can be set to enable input of 

waypoints. Although any of these windows can be accessed directly, the primary method 

of entry is the mouse. 

Inside the radar scope, the mouse button can be used to place/edit waypoints or 

select targets. Once entered, a path connecting the waypoints to the target is generated. This 

enables a visual of the intended flight path in order to determine safe paths or to perform 

feint maneuvers (i.e. off bearing shots). The waypoint edits apply to whatever missile cell 

is currently selected. This cell is displayed as a number from 1 to 16. If at anytime a 

waypoint needs to be deleted the CLEAR button for that waypoint can be picked. No 

waypoint or target information is passed to the missile until the ARM button is depressed. 

This will change the status from READY to ARMED and store the flight information. The 

Cancel button can be used to return a cell to the READY condition. 
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Multiple missiles can receive the same 

flight paths simply by selecting new missile cells 

after a successful arming. Flight information is 

retained until it is edited for a new target or a 

change in waypoint. Each entry of a different 

missile cell increases the salvo number for that 

particular launch. Thus, one launch could contain 

any number of missiles (up to 16) on any number 

of different or the same flight paths to various 

targets. A much more desirable situation for naval 

assets than line of sight engagements. 

2. Missile Data Passing 

The structure of the missile flight 

information resembles that of the radar point data. 

Arming a particular missile cell stores the flight 

path in a data structure. This data structure relays 

the information to NPSNET via shared memory, 

again, in the form of a pfDataPool. NPSNET uses 

this information to dynamically construct the 

required missile objects (discussed in Chapter 

VIE) and awaits launch notification. At launch, 

these objects are released as entities with the 

NPSNET environment. 

Figure 12: Missile Engage Section 
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D. GUN ENGAGEMENT/ OWN SHIP 

PARAMETERS 

The right hand side of the weapons control 

console is divided into two distinct areas. The 

upper portion is devoted to the information 

required for engagement of a target with 

shipboard guns. Its functions are similar to that of 

the missile engagement section. A number of 

salvos can be entered representing the number of 

j rounds to send down range. Target position 

determines the slew and elevation of the gun. 

Communicate is conducted through shared 

memory. 

The lower portion contains the true location of the 

ship within the world. As with other position 

windows it is shown as a latitude and a longitude. 

These however are misnomers. The latitude is 

actually the exact Y position of the ship in world 

coordinates. Similarly, longitude represents X. 

Since within the world X and Y positions can take 

on negative values, so too can the latitude and 

longitude displayed in position windows. This is 

unrealistic but it keeps in tune with the current 

NPSNET coordinate implementation. As long as 

the origin is correlated to the southwest corner of 

a flat world no problems should arise. 

Figure 13: Gun/Platform Status 
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Along with the true position, own ships course and speed are displayed. These are 

critical pieces of information, especially during engagement planning stages. Figure 13 

depicts this area of the Weapon Control Console. 

E.   SUMMARY 

The Weapons Control Console is a stand-alone program that provides the required 

interface to plan weapons engagements. With the tri-fold function of radar display, 

engagement planning, and weapon launch, the WCC closely approximates fleet control 

consoles. 
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VIII. WEAPON IMPLEMENTATION 

A. BACKGROUND 

After creating a weapons interface suitable for use within NPSNET, consideration 

was given to the development of a shipboard weapon that more closely resembled those in 

use in the fleet. Current weapons in NPSNET do not have certain characteristics 

implemented that are unique to naval munitions, for example waypoint flight, radar seek, 

and vertical launch. It was decided to simulate a surface to surface (SSM) attack missile to 

demonstrate the use of the CICVET. Dubbed a Harpoon in the code and at the WCC, the 

missile developed only nominally represents the flight and attack profiles of one of the 

world's most commonly found SSMs. 

B. NPSNET MUNITIONS CLASS 

Previous work in NPSNET has created a base munitions class upon which various 

types of weapons can be built. Basic weapons implemented were bullets, bombs and 

missiles. These are essentially "straight-line" weapons in that they are targeted using visual 

means (a HUD cross hairs). Weapons are fired by depressing certain buttons either on the 

fire control joystick or on the keyboard. NPSNET handles these interrupts by instantiating 

the appropriate class of munition and invoking its member functions. The instantiated 

object becomes an entity within the simulation, updated similarly to the other entities. 

The Harpoon missile was implemented as a derived class of the munitions class. 

This research focused on altering two of the member functions of the munitions class, the 

move() and sendfire(), and implemented a new function seek(). Additionally, changes were 

made to the launch effect animations and to the missile camera view. 
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C.   HARPOON WEAPON CLASS 

1. Launch 

Because the actual launch command comes from a separate process, the weapon 

control console, a different approach is used for the instantiation of Harpoon missile 

objects. Lacking a direct interrupt to handle launch conditions, throughout the simulation 

process a check must be made to the shared memory area to catch the launch signal from 

the interface process (details of this area can be found in Chapter VII). Thus, instead of 

handling an interrupt through a callback function, the sendfire() function of a newly created 

Harpoon is called directly. This function creates the required packets to inform the network 

of a launch. 

The source for the parameters to sendfire() is also different. This is to reflect the 

indirect launch methods used. In other words, the launch condition must flow from a stand- 

alone program executed by a NPSNET human entity. This stand-alone interface 

communicates to code that is driving a human entity. Since this entity has no inherent 

weapons, the code must establish which entity the human is mounted on in order to launch 

properly. Previous weapons received their data, i.e. position, orientation, and target simply 

by grabbing the data of the driven entity. In the case of the Harpoon, the mounted ship 

entity's data is utilized. 

The shared memory is used not only for the launch condition but also the flight 

information. More data is required by the constructor when Harpoons are created than are 

required during instantiation of other weapons. This data comes from the missile 

engagement sequences that an operator inputs using the weapon control console. This data 

also replaces the line-of-sight information used by other weapons. Now the missile is 

"programmed" with its flight path prior to launch, mimicking the real world where surface- 

to-surface missiles are launched as 'fire-and-forget" munitions. 
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2. Füght 

The flight of the missile entity is controlled by the move() member function. Within 

the structure of the Harpoon class four position values are maintained: three for waypoints 

and one for a final position. This final position is the target position, but it is pointed out 

that this position does not necessarily have a target located at it. It is simply the geographic 

position that a radar operator determined a possible target was at. The flight path is not 

based on the actual positions of any particular entity within the simulation. This 

distinguishes the Harpoon implementation from previous ones used by tanks and aircraft. 

The flight of the missile is controlled by these positions. 

Waypoints are read from the shared memory area. First, the number of entered 

waypoints, one to three, is read. This enables the determination of the number of flight legs 

and when the seeker head should be activated. For each positional update, a comparison of 

the current position is made to the endpoint of the current leg. Using missile velocity the 

missile's position is advanced along the direction of the leg. Within a minimal distance 

from a leg endpoint, the missile is turned to the new leg. After the terminal leg is reached, 

the seeker head is enabled at a distance of 10,000 meters from the target position and 

guidance continues based on the seek() function. 

3. Termination 

When a distance of 10,000 meters from the final position is reached, the seek() 

member function is invoked in order to fine tune the target position. If the final point 

happens to be less than 10,000 meters away, then the seeker is invoked immediately upon 

the missile turning to the terminal leg. The seek() function uses the pfSegSet data member 

of the Harpoon class. This pfSegSet is created and used in much the same way as with the 

radar functions (see Chapter VI). In this case, the segments are positioned extending from 

the nose of the missile for a distance of 10,000 meters. The segments are swept side to side 

to simulate the onboard radar of the Harpoon. 
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When the missile is on its terminal leg and the seeker is enabled, the final position 

is used only if no intersection points are returned from the seeker head. When an 

intersection on a segment is successful, this point is used to correct the missile's flight. 

Adjustments are made to make this point the terminal one. The successful intersection test 

means that the missile will be driven toward an object and an impact will occur. It is pointed 

out that this intersection could be with any object in the world, a building, land or dynamic 

entity. Hopefully the information analyzed by the radar operator was good enough to 

produce a hit on a hostile entity. If no intersections resulted and the missile has reached its 

programmed destination, it self-destructs. 

D.   SUMMARY 

A simulated surface-to-surface missile was implemented as part of the CICVET. 

Known as a Harpoon, it serves to enhance previous weapon implementation by augmenting 

capabilities. The Harpoon has waypoint flight, up to three, and a seeker head for terminal 

searching and target acquisition. 
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IX. CONCLUSION 

A.   RESULTS 

The goal of this project was to implement weapons and sensor capabilities in the 

current NPSNET naval asset. In achieving this goal the following areas were explored; 

•Large screen displays replace heads up display within the shipboard virtual 

environment. This method of information display/dissemination is more 

consistent with the real-world. LSDs are common in fleet combat information 

centers and are a better representation because real-world use expands a ship's 

interest domain through information links (i.e. satellite, radiowave). 

• A functional radar was built. This radar uses intersection testing in an effort to 

simulate radar used in the fleet. With enhancements to ensure detection of 

dynamic objects, the radar can relate a two-dimensional picture of the world 

suitable for both weapons engagement and radar navigation. 

• A Weapons Control Panel was constructed for engagement planning and weapons 

launch. A stand-alone program, the WCC communicates with NPSNET through 

a shared data-pool. It provides display capabilities to facilitate the planning stages 

of hostile encounters. Additionally, it provides the interface to the weapon entities 

within NPSNET. 

• A new class of weapon was introduced to NPSNET. Nominally representative of 

the Harpoon surface-to-surface missile, the NPSNET Harpoon has inherent 

waypoint capability and a self search mode for target acquisition and destruction 

• All CIC functions are executed only when inside CIC. This prevents any decrease 

in performance of NPSNET outside of the CIC. 

The above additions to NPSNET create the foundation of a Combat Information 

Center Virtual Environment. By no means all-inclusive, it does demonstrate that indeed 

CICs can be modeled in networked virtual environs. As a integral part of a fully functional 
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shipboard VE, the CICVET could play a major role in supplemental training of navy 

personnel. 

B.   RECOMMENDATIONS FOR FUTURE WORK 

This thesis was a continuation of work previously conducted in NPSNET. Although 

this work and others have produced significant results in the creation of a shipboard virtual 

environment, some areas of research remain unexplored. Below is a summary of some of 

these areas as they relate to CIC and the shipboard VE in general. 

1. NPSNET V 

Currently in the design stages, NPSNET V will break from the past and establish 

itself as a technological stand-out. We hope that special consideration will be paid to the 

unique aspects that naval assets have over other battlefield entities. These include longer 

range sensors, longer range weapons, and larger domains of interest. Taking into account 

how actual information is generated and utilized will be key. An implementation of radar 

is just one example. 

2. Radar Enhancements 

The radar of the CICVET was constructed from the beginning as a "can-we-do-it" 

project. To this end it does not reflect actual operating characteristics of any particular 

radar. Certain computational constraints in performing the necessary intersections preclude 

efficient radar implementation. These are being addressed in new releases of software 

toolkits such as Cosmo3D. Thus future implementations of intersection radar may be more 

feasible. 

3. Improved Interface 

A weapon control console as a stand alone program is not the ideal method. In fact 

it precludes one of the major reasons for using virtual environments. If the WCC could be 

implemented within the world then other players within the CIC could gain the information 

simply by glancing at the console in their view. At the time of this research, the creation of 
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a working console within the world adversely affected the frame rate so much as to prevent 

any useful information display. Such a console would naturally be built using the flexibility 

of direct OpenGL calls. Creating the geometry of buttons and knobs and then the capability 

for picking them is the reason for the computational increase. 

4. Physically Based Weapons Suite Development for Ships 

Follow on work could entail the physical modeling of real weapons suites. The 

Harpoon class of the CICVET merely touches the surface of today's weapons capabilities. 

In the future raw missile data could be fed into 3D simulations to get true to life fighting 

capabilities amongst entities. 

5. Test and Evaluation of Training within a Virtual Environment 

While establishing the foundation of a trainer for CIC personnel, the CICVET 

requires further enhancement and expansion to include the simulation of multiple consoles. 

After this, design and implementation of test and evaluation procedures for the exercises 

performed within the virtual environment must be created. Only after a well thought out 

and executed objective evaluation can one begin to discuss the merits or validity of VE 

training. 
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APPENDIX USER'S GUIDE 

This appendix is the user guide for operating the NPSNET Ship Project System 

(NPS SHIP) and the radar/weapon control console. It explains how to start and operate the 

ship, human entities and then bring up the radar console. It does not cover the features of 

NPSNET; the operator should use NPSNET's User Guide located on the Naval 

Postgraduate School Computer Science Department's world wide web page 

(http://www-npsnet.cs.nps.navy.mil/npsnet) for further details. 

A.   STARTING NPS SHIP AND HUMAN ENTITY 

NPS SHIP is a simulation run within the NPSNET vehicle simulator. NPSNET is a 

robust system capable of configuring many input and output devices to control vehicles in 

a simulation. NPSNET is the visual simulation manager of NPS SHIP. The user needs to 

have access to more than one workstation on a network, before starting NPSNET. To run 

NPSNETSHIP the user needs to go into -npsnetlV/npsnet on workstation#0, and then into 

the configuration management view eakyuz and change to the directory /cm/npsnet on 

workstation^ to start a weapons control console. The user should then execute the 

commands below. Because NPSNET is a robust system, it can be started in many different 

configurations- 

Workstation #0 - start the ship entity 
machine %bin/npsnetP7 -f config.ship 

Workstation #1 - start the human entity 
[eakyuz]machine% bin/npsnetPV -f config.sailor 

The "sailor" humans move within the virtual environment also using the standard 

NPSNET commands. The exceptions occur when transporting about the "antares96" ship, 

and when manipulating objects in the "antares96" ship. Once mounted on the "antares96" 
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ship, the "sailor" can transport to different locations about the ship using the keyboard 

commands described in Table A-2. To bring up the Weapons Control Console, the sailor 

Transport Keys & Locations (you must be 
mounted on the ship to use these) 

F9 Pier on Island 

CNTLF9 Cargo Deck/Vehicle Ramp 

CNTLF10 Port Bridge Wing 

CNTLF11 Engine Room Lower Level 

CNTLF12 Combat Information Center 

Table 2: Transport Keys & Locations 

should go into Combat Information Center by pressing CNTL F12 upon being mounted to 

the ship entity or walk to the CIC. Additionally, the user can manipulate objects in the ship 

as follows. First, the simulator must be in the SHIP PICK mode. Using the middle mouse 

button, the user can change the NPSNET picking mode (see NPSNET User Guide for more 

information). Second, in order to manipulate an object in the model (i.e. picking up a 

nozzle), use the look mechanism (white arrow keys on key pad, or hats of the fcs) and line 

up the center cross hairs of the heads up display (HUD) or the center of simulation window 

over the object to be manipulated. Then press either the Left Button or Right Button as 

described in Table A-3 and Table A-4. 

Joystick Buttons for Ship Picking 

Throttle #7 Left Button 

Throttle #3 Nozzle Toggle Switch 

Stick Bottom Right Button 

Table 3: Joystick Buttons for Ship Picking 
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Mouse Buttons for Ship Picking 

Left Left Button 

Middle Change Picking Modes 

Right Right Button 

Table 4: Mouse Buttons for Ship Picking 

When the user manipulates a fixed object (such as bulkhead, deck, ceiling, desk, 

etc.), information about that object is displayed in the unix shell window. When the user 

manipulates a movable or selectable object (such as doors, valves, or Weapons Control 

Consoles), the movable object moves in the direction of the buttons, either opening or 

closing, If it is a selectable object like Weapons Control Console another window pops up 

and the weapons control console program runs in it. Another way to run the weapons 

console is to go into the CIC and execute the following command in eakyuz view. 

Workstation #1 - 
[eakyuz]machine% bin/radar 

B.   OPERATION PROCEDURE OF WEAPON CONTROL CONSOLE 

Once NPSNET and Weapon Control Console run, communication between two 

processes is established via a shared data pool. The Weapons Control Console starts to 

draw environmental information upon reading it from datapool and starts to write radar 

range information to the datapool for use by NPSNET. This communication continues 

during execution for further information exchange purposes, like weapon engagement data 

from weapon control console and NPSNET. General Screenshot of Weapons Control 

Console is giving in Figure 14. Detailed command buttons and information boxes are 

explained in following sections of the user guide. 
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Figure 14: Weapons Control Console screen shot 
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1. Radar Range Scale: 

The displayable range of the radar is selectable by a slide bar. For the first 50-mile, 

range rings are drawn at an interval of 10 miles, after that they are drawn every 50 miles. 

Range rings are turned on as default and can be turned off by the toggle switch located at 

the left hand side of the range scale slide bar. The radar range set by the Weapons Control 

Console is written to a datapool to be read by NPSNET. Range rings and bearing indicators 

on the outer circle are implemented to give fast location information to the operator. 

2. Bearing and Range Indicators: 
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Bearing and Range indicators shows the current position of the radar cursor which 

is controlled by the left mouse button. It can be used to check a specific range or to get the 

true position of a track on the radar display. They indicate the true bearing (from true north) 

in degree and the range in nautical miles. 
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3. Target Position: 
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Target position information is invoked by clicking a location on radar screen with 

the right mouse button. This will also place a letter "T" to indicate the selected location as 

a target and draws a line connecting a platform's position to target's location to simulate 

the missile path. This information is fed into both the target position windows of missile 

engagement and main gun sections. The Cancel button under the harpoon control console 

is used to cease an engagement for a specific launcher, and clears the launching information 

from its local storage. Target position can also be entered or corrected by using the system 

keyboard. 

4. Edit waypoint: 

This button selects between edit and display modes of waypoint windows and radar 

display. In edit mode, waypoint windows are used to display the tentative waypoint 

information. Once the "ARM", which is explained below, is pressed this information is 

stored in local storage and becomes fixed until it is cleared by the button below it. In display 
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mode, the waypoint window displays the location information for that waypoint and in this 

mode it can not be cleared. 

5. waypoint -1,2,3: 

These windows display the position information in world coordinates for the 

waypoints. This information is input into the windows by clicking on the desired waypoint 

locations with the middle mouse button, or they also can be entered or corrected manually 

by way of keyboard. They can be edited in "waypoint edit mode" prior to launch even after 

being stored with "ARM" button. 

6. Salvo: 

This window displays the total number of missiles armed and ready to launch. 

Following a launch it zeros itself automatically. For main gun operation it indicates the 

number of rounds armed for the current target, and for the main gun it needs to be entered 

manually. 
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7. Plan Check: 

This area of the control panel is used for two different purposes. In waypoint edit 

mode it is used to input target and waypoint information for more than a single missile. 

Pressing this button will cycle to the next missile cell. In edit mode, it maintains the 

information in waypoint fields so that flight paths can be copied from missile to missile. In 

waypoint display mode it displays the information of the missiles one by one upon 

selection. Missile paths will also be drawn into the display. 

8. Status: 
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This field displays the status of the current missile cell selected. Possible statuses 

for a missile are "READY", "ARMED", and "EMPTY", for a main gun there is no 

"EMPTY" status. Default status for all missiles is "READY", upon selection of the "ARM" 

button next to this field, all target and waypoint information is stored into the missile 

structure and its status is changed to "ARMED". When a missile is launched its status is 

changed to "EMPTY", and this last status will prevent the missile from being launched 

more than once. 
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9. Launch: 

Launch button writes the target and waypoints information into the shared datapool 

and signals NPSNET to launch. Upon acknowledgment from NPSNET it sets empty cells 

and also decreases the number of available missiles by the number of missiles launched in 

this salvo. 

lO.Fire: 
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This button does the same thing as the launch button does for the missile part of the 

control panel. It writes the target information into the shared datapool, decreases the 

number of available rounds by the salvo number, and changes status from "ARMED" to 

"READY". 
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ll.Platform Status: 

This status field displays the course, speed, and location information of the platform 

which the radar is running on. It obtains the information from the shared datapool which is 

written by NPSNET. 

12. Weapon Status: 

These two windows indicate the available ammunition units for the harpoon guided 

missile and the main gun for the platform. Those amounts are preset to 16 for the harpoon 

guided missile and 5000 for the main gun ammunition. When launch is established from its 
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weapons control panel, the available number of missiles and gun rounds are dropped by the 

amount of the salvos launched/fired in this engagement. 

13.Radar Window: 

Radar window displays the environmental information gathered and passed by the 

NPSNET, it draws the all information as raw data. Final evaluation and classification of the 
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data is left to the user. It is also being used to draw guided missile attack paths, and range 

rings. 
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